Synthesis and Studies of 1,4,5,8,9,12,13,16-Octamethoxytetraphenylene†

Chun Wing Lai,‡,§ Chi Keung Lam,‡ Hung Kay Lee,‡ Thomas C. W. Mak,‡ and Henry N. C. Wong*,‡,§

Department of Chemistry and Central Laboratory of the Institute of Molecular Technology for Drug Discovery and Synthesis, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China

hncwong@cuhk.edu.hk

Received December 20, 2002

property and the electrochemical data of the corresponding tetraquinone 7 are presented.

Since the first successful synthesis of tetraphenylene by Rapson, Shuttleworth, and Niekerk in 1943,¹ extensive efforts have been made to explore its chemistry as well as that of its derivatives. Their inclusion properties toward solvent molecules² as well as their electronic and physical properties³ have been carefully studied. Recently, 2,3,6,7,10,11,14,15 octamethoxytetraphenylene has been suggested to be a potential redox indicator on the basis of its redox-controlled reversible $C-C$ bond formation.⁴

Although many aspects concerning the chemistry of tetraphenylene were studied, the construction of supermol-

(4) Rathore, R.; Le Magueres, P.; Lindeman, S. V.; Kochi, J. K. *Angew. Chem.*, *Int. Ed.* **2000**, *39*, 809.

10.1021/ol020253s CCC: \$25.00 © 2003 American Chemical Society **Published on Web 02/22/2003**

ecules consisting of tetraphenylene derivatives as building blocks is still not known. Triggered by the aforementioned reasons, we have started a research project with the eventual aim to construct three-dimensional molecular scaffolds using tetraphenylenols or their derivatives as building blocks. In our project, we would like to prepare all five tetraphenylenols **¹**-**⁵** as shown in Figure 1.

ORGANIC LETTERS

2003 Vol. 5, No. 6 ⁸²³-**⁸²⁶**

Figure 1. Five tetraphenylenols **¹**-**⁵** for the construction of molecular scaffolds.

[†] Dedicated to Professor Tze-Lock Chan (The Chinese University of Hong Kong) on the occasion of his retirement.

[‡] Department of Chemistry, The Chinese University of Hong Kong. § Central Laboratory of the Institute of Molecular Technology for Drug

Discovery and Synthesis, The Chinese University of Hong Kong. (1) Rapson, W. S.; Shuttleworth, R. G.; Niekerk, J. N. *J. Chem. Soc.*

¹⁹⁴³, 326.

^{(2) (}a) Mak, T. C. W.; Wong, H. N. C. In *Comprehensive Supramolecular Chemistry*; MacNicol, D. D., Toda, F., Bishop, P., Eds.; Pergamon Press: Oxford, 1996; Vol. 6, pp 351-369. (b) Mak, T. C. W.; Wong, H. N. C. *Top. Curr. Chem.* **1987**, *140*, 141. (c) Huang, N. Z.; Mak, T. C. W. *Chem. Commun.* **1982**, 543.

^{(3) (}a) Salem, L. *The Molecular Orbital Theory of Conjugated Systems*; W. A. Benjamin: New York, 1966; pp 122-125, 468-470. (b) Rashidi-Ranjbar, P.; Man, Y. M.; Sandström, J.; Wong, H. N. C. *J. Org. Chem.* **1989**, *54*, 4888.

We herein report the synthesis of 1,4,5,8,9,12,13,16octamethoxytetraphenylene (**6**). The inclusion property of **6** and the electrochemical data of its corresponding tetraquinone **7** will also be delineated.

The synthesis of **6** is described in Figure 2. Sandmeyer

Figure 2. Synthesis of 1,4,5,8,9,12,13,16-octamethoxytetraphenylene (**6**) from 3,6-dimethoxy-2-nitroaniline (**8**).

reaction between diazotized 3,6-dimethoxy-2-nitroaniline (**8**) 5 and potassium iodide gave 2-iodo-3,6-dimethoxy-1-nitrobenzene (9) in 80% yield. Ullmann coupling reaction⁶ of 9 afforded the symmetrical 3,3′,6,6′-tetramethoxy-2,2′-dinitrobiphenyl (**10**) in 51% yield. The two nitro groups in **10** were reduced to amino groups in 71% yield by hydrazine reduction in the presence of palladium on charcoal in refluxing methanol.⁶

Another Sandmeyer reaction between diazotized 2,2′ diamino-3,3′,6,6′-tetramethoxybiphenyl and potassium iodide completed the synthesis of 2,2′-diiodo-3,3′,6,6′-tetramethoxybiphenyl (11) in 67% yield.⁶

The results in Table 1 show the reaction conditions for the conversion of 11 to 6. In agreement with the literature,⁷ treatment of **11** with *n*-BuLi in diethyl ether as solvent led to **6** as the major product, whereas the use of tetrahydrofuran only gave 1,4,5,8-tetramethoxybiphenylene (**12**) ⁵ as the major product. The use of *n*-BuLi at 0 °C resulted in smooth lithiation of **11** after 8 h. From thin-layer chromatographic studies, lithiation at -78 °C remained incomplete after

prolonged treatment, and prominent deterioration of the lithiated species was observed at room temperature. With the exception of $CuCl₂$, both $CuBr₂$ and $ZnCl₂$ gave exclusively **12** as the only product. The optimum conditions for the realization of **6** in 31% yield are therefore *n*-BuLi, Et₂O, 0 °C with CuCl₂.

It was found that **6** formed a 1:2 clathrate inclusion compound with dichloromethane. Many attempts have been made to examine the inclusion properties of **6** toward other organic solvents to no avail. However, in mixed solvent systems, the host-guest selectivity between 6 and dichloromethane is remarkable: for example, in CH_2Cl_2/C_6H_5Me C_6H_6/C_6H_{14} (1:1:1:1), $CH_2Cl_2/C_5H_5N/p-C_6H_4Me_2$ (1:1:1), CH₂Cl₂/C₆H₅OMe/*p*-C₆H₄Me₂ (1:1:1), CH₂Cl₂/CH₂Br₂/CH₂I₂/ *p*-C6H4Me2 (1:1:1:1), CH2Cl2/CHCl3/CCl4/*p*-C6H4Me2 (1:1: 1:1), and $CH_2Cl_2/MeCOMe/H_2O$ (1:1:1) solvent systems, only the 2:1 complex of dichloromethane and **6** was formed, which was confirmed by an X-ray crystallographic analysis⁹ (Figures 3 and 4) and NMR spectroscopic data.

Figure 3. Molecular structure and atom labeling of $6 \cdot 2CH_2Cl_2$. Thermal ellipsoids are drawn at 50% probability level. Hydrogen atoms are omitted for clarity. The average formal single and double bonds in the central ring are 1.495(5) and 1.390(4) Å, respectively.

Figure 5 shows the conversion of **6** to its corresponding tetraphenylenol and quinone derivatives. Deprotection of the

⁽⁵⁾ Rees, C. W.; West, D. E. *J. Chem. Soc. C* **1970**, 583.

⁽⁶⁾ Hine, J.; Hahn, S.; Miles, D. E.; Ahn, K. *J. Org. Chem.* **1985**, *50*, 5092.

⁽⁷⁾ Kabir, S. M. H.; Iyoda, M *Synthesis* **2000**, *13*, 1839.

Figure 4. Stereoview of 6 ^{\cdot} $2CH₂Cl₂$. In the crystal structure, molecules of **6** are arranged in a layer matching the plane (020), and between such adjacent layers lie the CH₂Cl₂ solvate molecules.

methoxy groups of **6** employing boron tribromide at ambient temperature afforded 1,4,5,8,9,12,13,16-octahydroxytetraphenylene (**5**) in quantitative yield. Phenol **5** was oxidized to its corresponding tetraquinone **7** in 67% yield by the use of lead tetraacetate.

Figure 5. Synthesis of 1,4,5,8,9,12,13,16-octahydroxytetraphenylene (**5**) and its corresponding quinone **7**.

To examine the electrochemical property of **7**, a cyclic voltammetric method was employed. As shown in Figure 6, the cyclic voltammogram of **7** indicates three reversible couples at $E^{\circ} = -0.597, -0.813,$ and -1.296 V, respectively (see footnote b of Table 2).

In the first two couples, both reversible processes exhibit an equal peak separation of 116 mV and nearly equal anodic and cathodic peak currents at cathodic potentials. Table 2

Figure 6. Cyclic voltammogram of 7: CH₂Cl₂, 0.12 M [Bu₄N]⁺- $[BF_4]^-$, scan rate = 100 mV s⁻¹.

gives the reduction potentials for other *p*-quinones as well as those of tetraquinone **7**. ⁷ The *E*° values were taken from cyclic voltammetry peak potentials as $(E_a + E_c)/2$. The data show that the potential difference between the addition of the first and second electron is exceptionally small in **7** (∆*E*° $= 0.2$ V). One of the likely explanations is that charge transfer occurs between the semi-quinone and the opposite *p*-benzoquinone unit. Owing to the characteristic saddle shape of tetraphenylene, face-to-face interaction may occur between two opposite *p*-benzoquinone units that facilitate the distribution of charge. It is therefore likely that the second electron requires less energy to overcome the repulsive force inside the semi-quinone. However, the actual cause of the small ∆*E*° is still unclear to us. In addition, a cyclic voltammetric method was also applied to **6**. Although the anodic peak corresponding to the oxidation of 6 to 6^{2+} is ill defined, on the return scan the cathodic peak at $E_{\text{red}} = 0.172$ V representing the reduction of 6^{2+} to 6 is clear.⁴

Insummary,thesynthesisof1,4,5,8,9,12,13,16-octamethoxytetraphenylene **6** has been accomplished. A 1:2 clathrate inclusion compound was obtained between **6** and dichloromethane. In addition, the cyclic voltammogram of tetraquinone **7** shows extraordinarily small ∆*E*° between two

^a Compound **7** shows exceptionally small ∆*E*° values as compared with that of *p*-benzoquinone. *^b* All potentials are referenced to the ferrocenium/ ferrocene couple. The E° values were taken from cyclic voltammetry peak potentials as $(E_a + E_c)/2$.

⁽⁸⁾ Almlof, J. E.; Feyereisen, M. W.; Jozefiak, T. H.; Miller, L. L. *J. Am. Chem. Soc.* **1990**, *112*, 1206.

⁽⁹⁾ Crystal data for $6.2 \text{CH}_2\text{Cl}_2$: C₃₄H₃₆Cl₄O₈, $M_w = 714.43$, triclinic, *P*₁ (No. 2), with $a = 9.460(2)$ Å, $b = 12.892(3)$ Å, $c = 15.324(3)$ Å, $\alpha =$ 90.929(5)°, $\beta = 104.420(5)$ °, $\gamma = 110.950(4)$ °, $V = 1678.8(6)$ Å³, and D_c $= 1.413$ g cm⁻³ for $Z = 2$. The structure was solved by direct methods and refined to $R1 = 0.0488$ and wR2 = 0.0887 for 5279 observed data. In the crystal structure, molecules of **1** are arranged in a layer matching the plane (020) and between such adjacent layers lie the $CH₂Cl₂$ solvate molecules. CCDC reference no. 189269.

reduction potentials. It is believed that charge transfer may occur intramolecularly between a semi-quinone and the opposite *p*-benzoquinone unit in **7**. Further investigation of the electrochemical properties of **7** and inclusion properties of **5** are in progress.

Acknowledgment. This work was supported by a grant from the Research Grants Council of the Hong Kong SAR, China (Project No. CUHK 4264/00P), as well as partially by the Area of Excellence Scheme established under the University Grants Committee of the Hong Kong Special Administrative Region, China (Project No. AoE/P-10/01).

Supporting Information Available: Experimental procedures and full characterization for compounds **⁵**-**⁷** and **⁹**-**11**. The X-ray crystallographic data of 1:2 clathrate inclusion compound between **6** and dichloromethane in CIF format. This material is available free of charge via the Internet at http://pubs.acs.org.

OL020253S